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Modelling of microstructure in mesophases

by S. E. BEDFORDt and A. H. WINDLE*

Department of Materials Science and Metallurgy, University of Cambridge,
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(Received 4 August 1992; accepted 6 January 1993)

Small-molecule liquid crystals show textures which are readily studied at low
magnification in the optical polarizing microscope. In polymeric liquid crystals,
however, the textures are often much finer, taxing the microscope’s resolution.
Nevertheless, studies of microstructure in such polymers have been made and it is
apparent that they can differ widely both from small-molecule liquid crystals and,
indeed, from polymer to polymer. This paper sets out to account for these variations
by exploring the effect on microstructure of the marked differences between the
magnitudes of the splay, twist and bend elastic constants which are a characteristic
of many liquid crystalline polymers. We report a computer model which simulates
the development of microstructure for different ratios of the elastic constants. When
these are approximately equal, textures characteristic of small-molecule liquid
crystals result, such as those involving escape into the third dimension with the
degeneration of line defects into points. When the splay energy is high in
comparison with bend and twist, as is the case for many thermotropic liquid
crystalline copolyesters, escape does not occur and half integral disclination lines
predominate. For simulations involving planar boundary conditions, layered
microstructures result, frequently with little matching of the orientation from layer
to layer. Within the layers the trajectory of the orienting units is sinuous. This
simulated microstructure resembles textures observed in thermotropic copoly-
esters, studied both in this laboratory and elsewhere. The computer model uses a
lattice approach which is similar in some respects to that developed by Lebwoh! and
Lasher. It should not be thought of as a molecular scale model, however, but rather
as one based on assemblies of molecules which share a common director.

1. Introduction

The patterns of defects, or texture, apparent when a small-molecule nematic liquid
crystal is observed in the polarizing microscope have been studied for almost a century
[1] and many of their features are now well-characterized [2]. Although some of these
textures occur in polymeric as well as small-molecule liquid crystals, the interpretation
of microstructure in polymeric mesophases still presents many challenges, since it often
occurs at a scale approaching the resolution limit of the optical microscope. In
addition, many of the textures of liquid crystalline polymers vary both from those in
small-molecule liquid crystals and also from each other. For example, random
copolyesters [3] may exhibit microstructures which appear as a fine speckle and which,
although mobile, do not appear to coarsen with time, while polymers containing
flexible spacers in the main chain show microstructures that relax to a more
conventional threaded texture [4].
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The driving force for the development of specific microstructures in liquid
crystalline polymers is the minimization of the elastic distortion energy comprising
splay, twist and bend components (K, K, and K, respectively) [5]. Of the various
cross terms which are only non-negligible at large distortions, and depend on the
second derivatives of the director, K5 is likely to be the most significant. However,
while we have neglected this parameter in this study, we are aware that some
corrections may be necessary to the predicted director distributions in regions of severe
distortion such as disclination cores. For thermotropic main chain polymers, the
highest energy component is most usually splay [6], while for lyotropic main chain and
smectic side chain polymers bend may be the largest. We have developed a model that
simulates the evolution of microstructure as the material is, in effect, annealed
isothermally in the nematic phase, while at the same time permitting study of the
influence of particular disparities in the magnitudes of the three elastic constants. It is
thus possible to carry out microstructural simulations of both polymeric and small-
molecule mesophases. This model has been described previously for the case of 2/2
dimensions and equal elastic constants [7] and is extended here to include more
general three dimensional structures and disparate values of the elastic constants.

The model consists of a lattice of directors, represented by unit vectors, whose
centres are fixed on the sites of a primitive cubic lattice while their orientations are
allowed to vary in three dimensions. Annealing is simulated by minimizing the energy
of a given director with respect to its nearest neighbours. This approach shares many
similarities with that initiated by Lebwohl and Lasher [8] and developed by Allen and
Wilson [9] and Denham and co-workers [ 10}. An important difference, however, is
that those models are approximately molecular in scale, while the model described here
is supramolecular, describing ordering and thus microstructures over much greater
distances than would be possible using existing molecular modelling techniques. This
microstructural model forms a bridge between molecular modelling and the simulation
of observed properties.

It has previously been shown [7] that the interaction potential between two cells
can be modelled as the square of the sine of the angle between their directors. When the
elastic constants are equal this potential is reduced, for small angles, to a simple average
of the orientations with respect to some arbitrary axis. This ‘averaging algorithm’ is
very efficient computationally but is not valid when the elastic constants are not equal
and so, for consistency, it is not used in any of the simulations described in this paper.

We have considered three different constraining lattices. 2/2 dimensional simul-
ations are defined as those based on a square lattice containing N 2 cells, in which all the
vectors are constrained to lie in the same plane, the term 2/2 thus implying that the
directors are free to rotate in two dimensions in the plane of a two dimensional model.
In simulations termed 2/3 dimensional, the vectors are again confined to a plane, but
this time the lattice is three dimensional cubic, containing N 3 cells. Both of these
lattices simulate planar textures. In order to model more general structures, the model
is extended into 3/3 dimensions by using a cubic lattice and allowing the vectors
complete rotational freedom.

It is also important to address the issue as to the degree to which the algorithm,
which is essentially an iterative method for the three dimensional solution of the Frank
equations, provides a useful model of the relaxation processes observed in liquid
crystalline microstructures. In [7], account is given of the effect of reorienting the
central director of any cell group visited through only a small proportion of the angle
required to reach the minimum energy position. It was found that, beyond slowing the
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computational process, it had little effect on the nature of the microstructures seen
during different stages of the relaxation sequence. The algorithm is thus considered as
having a first order capability to model the development of a microstructure, and
several of the structures to be discussed below do not represent a final, minimum energy
state, but intermediate developments which are none the less especially relevant to
polymers in which structures are typically non-equilibrium, being limited kinetically.
Further refinements of the modelling sequence, in which orientation adjustments are
made on a fine scale and limited to favourable local energy gradients, are currently
being introduced into the algorithms and will feature in future publications.

2. 2/2 Dimensional simulations

The relaxation algorithm for 2/2 dimensional simulations has been discussed briefly
in a previous paper [ 7], but it is useful to outline it again as a logical introduction to the
more refined treatment which enables the three elastic constants to be handled
separately. It should also be emphasized that while 2/2 dimensional simulations are
particularly simple, and demonstrate the development of long range orientational
order in the absence of Brownian motion (i.e. at 0 K), genuine long range orientational
order does not occur in such systems at finite temperatures [10].

In general, the starting point for the simulations is the isotropic phase, in which all
the directors are randomly oriented except for those within the edge cells which are set
to specific orientations to represent periodic, free or fixed boundary conditions as
required. Microstructural development proceeds by picking a cell at random and
calculating the minimum energy position for its given environment of nearest
neighbours. The chosen vector then moves to this minimum position. Another cell is
then picked at random and the process repeated. After a given number of cycles, the
simulated microstructure is plotted and the process continued until no further
reduction in the total energy of the lattice is achieved.

The interaction potential can be illustrated by considering the possible rotations of
two isolated rigid rods fixed with respect to their centres of gravity. Stable equilibrium
is achieved when the two rods are either parallel or antiparallel while unstable
equilibrium corresponds to the orthogonal positions. An energy function which has
been used by previous workers [9], and which has been shown to be a good
approximation to more rigorous derivations [11], is sin? (§ — ¢), where 0 and ¢ are the
angles made by the rods in the respective cells to an external reference direction. In 2/2
dimensional simulations, the simplest treatment using a square lattice means that the
contribution to the total energy of the structure due to one particular cell can be taken
as the sum of the interaction energy over the cell’s four nearest neighbours. For the cell
shown in figure 1, in which the orientation of the central cell is ¢ and that of each
neighbour is 8, the energy is given by

Ez‘i sin? (6, — ¢), (1)

and the best orientation of the central cell, ¢y, is found by differentiating this
expression with respect to ¢ and rearranging to give

4
2, sin 20,
an 2¢ =it . @
Y. cos26;

i=1
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Figure 1. Definition of the angles used to calculate the interaction energy in equation (1).

From the shape of the tan 20 curve it can be seen that there are two possible solutions
for ¢, occurring between 0° and 180°, corresponding to minimum and maximum
energy orientations. These are substituted back into the original energy expression and
the lower energy solution chosen.

Expressions (1) and (2) have been derived for materials in which the elastic constants
are assumed equal and set to unity. This approximation, which is not unreasonable for
small-molecule liquid crystals where the elastic constants do not differ greatly, is not
readily applicable to thermotropic liquid crystalline polymers in which the splay
constant is usually higher than that of bend and twist [5]. The next step is therefore to
develop expression (1) to account separately for the different modes of distortion.

2.1. The splay and bend weighting

In 2/2 dimensions, the only possible distortions are splay or bend or combinations
of these, and their separate influences can be seen by examining the central row of cells
in figure 2(a). The left hand cell in which the director orientation, denoted by 6, is
horizontal is held, at this initial stage, to have only a bend influence on the central cell
irrespective of the central director orientation ¢. In contrast, the right hand cell in
which the director, 8,, is vertical has only a splay influence on the central cell. If,
however, the director of either of these neighbouring cells is at some arbitrary angle, as
shown in figure 2 (b), then it will influence the central director through both splay and
bend components, appropriately weighted. For neighbours one and two in figure 2 (b),
this weighting is given by the relationship

BE cos? 0, + SPsin? 8, 3

where i=1 or 2. This expression has the appropriate bounding conditions of pure splay
when 8,=90° and pure bend when 6,=0 (as measured from the x axis), together with a
value of unity for all angles when SP= BE. The coefficients SP and BE are used in
expression (5) rather than K| and K, respectively, because it is the ratio of splay to bend
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Figure 2. (a) Two dimensional lattice considering only the middle row of directors. 6, =0
influences the director only through bend, while 8,=90 influences the director only
through splay. In (b) 8,, and 8, have arbitrary orientation and interact with the central cell
through both splay and bend as given in expression (3). In (¢) 0, =0 influences the central
director through splay and 6, =90 bend. The arbitrary 0, and 6, in (d) interact through
both splay and bend as described by expression (4).

energy that is important in the expression rather than their absolute magnitudes. For
example, if K;=5x10"7dyne and K;=10-1x10"7dyne, values for the small-
molecule liquid crystal PAA at 120°C [12], SP=1 and BE=2-02.

In figures 2 (c) and (d), the splay and bend influences down a column of cells are
established. It can be seen that the mode of distortion is reversed with respect to the row
of cells, so that in figure 2 (c) there is only a splay influence from cell three and a bend
influence from cell four. Therefore, for arbitrary angles 8, the weighting is now given by

SP cos? §,+ BE sin?6,, @

where i =3 or 4. In this way the original sine squared energy expression can be weighted
by resolving each neighbouring vector into its splay and bend components. For the
lattice shown in figure 1

4
(BE cos? 6;+ SPsin? 6,)sin (,— ¢)+ ) (BEsin?6,+ SP cos? 6;)sin* (0, — ¢), (5)
i=3

M

it

i=1
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and energy minimization to find the optimum ¢ gives

(BE cos® 8, + SP sin? §,) sin 26, -+ Z BE sin? 0+ SP cos? 6;) sin 20,
1

, (6)
(BEcos 6;+SPsin®0,)cos 20, + Z (BE sin? 0,+ SP cos? 6;) cos 26;

tan 2¢,,, =

"M“ “MN

i

so that the process of microstructural development by energy minimization can be
followed as before using the modified expression.

These splay and bend weightings are in accord with Frank’s definition of the splay
and bend distortions when applied to a two dimensional lattice. From the Frank
definitions [13]

on, on

Splay: 5= ax, > Sy =—3j’ (7)
on, _0On,
ay, > 2= ax, ’

where s, and s, are the components of splay, b; and b, are the components of bend and
on,, and on, the components of the director in the x and y directions. Therefore, in the
lattice shown in figure 2, along a row (the x direction), splay is a maximum for x;=0 as
in cell 2, while bend is a maximum for y,=0 as in cell 1, and down a column (the y
direction) the mode of distortion is reversed.

As an example of the use of expressions (5} and (6), consider the row of cells in figure
3(a). 0,=0° 0,=45° and ¢,,, the orientation of the central cell, remains to be
determined. From expression (5) the total energy, E, of the row is given by

E=(BE cos?0° + SPsin? 0°)sin? (0° — ¢) + (BE cos? 45° + S P sin? 45°) sin? (45° — ¢b),
)

which is plotted agains the angle, ¢, for three different ratios of the elastic constants in
figure 3(b). The figure shows that the optimum angle of the central cell, ¢,
corresponding to the minima on the three curves, is different for each of the three elastic
constant ratios. These values may be obtained either by reading directly from the plot
or by substitution into expression (6) in accordance with the computer algorithm. In
either case, the three different values of ¢, are (i) 22:5° for SP=BE, spreading the
defect uniformly between the neighbouring cells, (ii) 45° when BE =0, so that the only
distortion is bend and (iii) 13-3° when SP =0, minimizing the amount of bend. These
three solutions are sketched in figure 3 (c).

A potential difficulty is encountered with the model for configurations where
the directors are separated by exactly 90°, such as #, =45°, 8,=135°, 6;,=135°and 0,
=45° because tan 2¢, as defined by expression (6), is indeterminate. Such exact cases
are very unlikely to occur during the simulation, however, and so in practice do not
cause a problem. ‘

Before proceeding further we should question whether it is reasonable to assess the
level of splay or bend pertaining to the central director as if it is dependent only on the
orientation of the surrounding directors. Look again at figure 2 (a). While the influence
of the director of cell 1 on the central cell will consist only of bend, the effect of the
orientation of the central director on cell 1 will be a combination of both splay and
bend, in view of the arbitrary value of ¢ chosen in the diagram. Tt is thus unreasonable
to assume that the distortion field resulting from the relative orientations of the two

bend: b,=

(®)
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Figure 3. Example of the algorithm for a row of three cells in two dimensions. In (a) 6, =0,
0, =45 and the orientation of the central cell, ¢, is to be determined. In (b) the total energy
of the central cell is calculated in accordance with expression (5) for three limiting ratios of
the elastic constants. The three values of ¢, corresponding to the three elastic constant
ratios are given in {c}.
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directors will be pure bend. We have therefore extended the expressions (3) and (4), the
weighting of distortion field types, so that they take into account the orientation of the
central director on an equal basis to that of each of the surrounding directors. Hence
the expressions (3) and (4) become, respectively

0-5(BE cos? §;+ SPsin? 0;) + 0-5(BE cos® ¢ + SPsin? ¢), (10)
0-5(SP cos® §;+ BE sin? 6,) + 0-5(SP cos? ¢ + BE sin? ¢), (11)

while the relation for the energy in expression (5) becomes

E=05 i ((BE (cos? 8, + cos? ¢) + SP (sin* 0, + sin? ¢)) sin* (6, — ¢))

+05 i ((SP(cos? 6,4 cos? ¢) + BE (sin? §; + sin? ¢))sin*(6,— ).  (12)
i=3

The increased algebraic complexity of these more realistic equations has led us to
adopt a different approach to the determination of the minimum energy value of ¢. For
although expression (12) can be readily differentiated, as could expression (5), the next
step, which involves the extension of the treatment to 3/3 dimensions, yields equations
which are distinctly unwieldy. While this work is recorded elsewhere [14], it is not
developed here, as the alternative iterative approach to the minimization of E, has
proved much more robust in the more complex situations treated below. For the
iterative method, the director of the central cell is rotated through a completely random
angle to a trial position and its new energy computed. If this is less than was achieved at
any previous settings it is accepted. This approach is especially versatile as it permits
simulations at finite temperatures for levels of structure in which each cell contains at
most a small group of molecules. Temperature dependent modelling is achieved where
the acceptance or rejection of a given trial orientation is set to be exponentially
dependent on the ratio of its energy to the absolute temperature. The modelling of
larger scale microstructures reported here is equivalent to 0K and so only the
orientation with the lowest value of E, is accepted. As the equilibrium structure is
approached, this algorithm becomes rather sluggish, since few tries are accepted. The
speed of convergence is enhanced at this point by using, as the simulation develops,
progressively smaller random increments in orientation with respect to the previous
setting. This method is described more fully by Allen and Tildesley [15].

In the case where the energy constants are equal, equation (12) reduces to (5), and
thus the simulation behaviour is equivalent. However, where splay energy is set to be
much larger than bend, or vice versa, the use of the modified term for energy in
expression (12) avoids the phenomenon of lattice ‘print through® where the energy
distribution within a director field, such as that around a disclination, depends to some
extent on the orientation of the director in relation to the cell axes.

2.2. Performance of the model with discrete splay and bend elastic coefficients

In this section some examples of the model are described for a square lattice of cells.
This intermediate step is introduced in order to test that the model behaves correctly in
2/2 dimensions before moving on to the more physically realistic, but computationally
demanding 3/3 dimensional case. Using a Vax 3100, the simulation of microstructural
devetlopment, from the totally random isotropic phase through to the ordered
monodomain, requires approximately 5 min of computing time for a lattice of 35 x 35
cells. This speed is a reflection of the straightforward energy expression and the
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+1 and s=+4 disclinations. The trajectory patterns of these

disclinations are well-known, both where the elastic constants are the same and where
they are different [16,17]. It is thus possible to compare readily the simulated and

analytically derived structures.

on the simulation through the choice of appropriate boundary conditions, were

relatively small number of cells. The microstructures selected, and if necessary forced
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2.2.1. Simulation of s=1 disclinations with discrete elastic constants

s= +1 disclinations are energetically favourable in 2/2 dimensions because the
energy of a disclination varies as the square of its strength. As a result, this disclination
type predominates in two dimensional simulations, irrespective of whether the elastic
constants are equal or different. Figure 4 shows typical examples of simulated two
dimensional microstructures, together with schematic ‘disclination maps’ that plot the
coordinates of the s = + % and s = — } disclination cores in each case. They have all been
obtained for simulations with free boundary conditions and each represents the
structure after approximately half the number of iterations required to convert the
random starting arrangement into a completely ordered monodomain. In figure 4(a)
the splay constant is equal to one hundred times that of bend; the fractional difference
between the elastic constants, ¢, expressed as

Ki—K,

g=——",

(13)

being equal to —0-98. In figure 4 (b) the relative magnitude of the elastic constants is
reversed so that ¢ is equal to 0-98, while in figure 4(c) the two constants are equal, ¢
being equal to 0. (¢ is sometimes referred to as the elastic anisotropy [16].)

In all 2/2 dimensional simulations, it was observed that there were approximately
equal populations of s= —4and s= + 3 disclinations, both having the same energy, and
that they adopted a spread of orientations in the absence of external fields. The shape of
the simulated disclinations did not change as a function of their orientation with
respect to the lattice, however, and so could be readily compared for the different values
of &. Comparison of s = —4 disclinations, whose cores are positioned at N1, N2 and N3,
and the s = +1 disclinations at P1, P2 and P3, shows that the director field surrounding
the s= —1 defects does not alter appreciably with ¢, while that of the s= +3 defects
undergoes a considerable change. This marked difference in behaviour can be seen
most clearly by reference to the line drawings in figure 5 (i) and in figure 6 (i) in which
continuous lines have been traced over the director patterns from the selected
disclinations P1, P2 and P3 and N1, N2 and N3, respectively. The drawings are in the
same orientation as the disclinations in the simulated microstructures and the
approximate area which has been traced is marked on the disclination maps in figure 4
by hatching. It can be seen that the three s= +3 defects are associated with very
different director trajectories, while the morphology of the s= —3 defects remains fairly
constant, although it is affected slightly by the distorting effect of their neighbouring
defects.

The constant motrphology of the simulated s= —4 disclinations, despite variations
in g, is in agreement with the continuum theory which predicts that the symmetry of this
defect prevents significant change in structure [18]. It may also be noted that at both
extremes of ¢, the simulated director field cannot adjust to remove completely the more
costly distortion, at least in 2/2 dimensions, and this again is in agreement with theory
[18]. The marked morphological variation of s= +1 disclinations has been observed in
nematic liquid crystals using transmission electron microscopy [18] and is also
predicted from minimization of the Frank distortion energy expression as described by
Nehring and Saupe [16].

In order to determine how closely the shape of the simulated disclinations matches
theoretical predictions, director trajectories of both s= +% and s= —} defects were
calculated and are represented in figures 5 (ii) and 6 (ii). These analytically determined
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director fields have the same value of ¢ as the corresponding simulations in figures 5 (i)
and 6 (i), but have been obtained by placing vectors onto the lattice in accordance with
the expression of Nehring and Saupe [16], a procedure that is similar to that
introduced by Nicholson [19]. The calculated patterns are oriented on the page to
correspond with those selected from the simulated patterns.

The Nehring and Saupe equation may be expressed as

Baioe =ST+6 < :((sz_' S))z) sin (2u(s — 1)) + Co, (14)

where ¢ ;. is the angle the director makes with the x axis at all points along a line which
is at an angle, a, to that axis, as defined in figure 7. C, is a constant which rotates the
disclination, but does not alter its shape, so is set to zero in the calculations.

It can be seen that for each value of ¢, the shape of the simulated disclination pattern
closely matches the calculated structure. Where SP =100 and BE=1 as in figure 5(a),
both the simulated and calculated s= + 3 disclination have a structure resembling that
of an archway, containing considerable bend, but very little splay. In figure 5 (b), where
SP=1 and BE=100, both simulated and calculated structures contain only splay,
resembling a sunrise, again shown as an inset. In figure 6, it can be seen that, like the
simulated structure, the director trajectory of the s= —4 disclination calculated from
expression (14) undergoes very little change as the ratio of the elastic constants is varied.

It is possible to quantify the extent of similarity between the simulated structures
and those given by the Nehring—Saupe expression by measurement of the angles ¢ ;..
and « as defined in figure 7, for the simulated disclinations, and comparing these values
with those expected from the expression. The table shows the results of this comparison
for the three s= +% disclinations. The theoretical and simulated data match quite
closely, although it is difficult to assess the magnitude of the errors which arise from the
distorting effect of neighbouring disclinations in the model. Corresponding measure-
ments were not made for the s= —1 disclinations, because in this case the three
morphologies were clearly affected more by the distorting effect of the neighbouring
disclinations than by the difference in the elastic constants.

o
o
Figure 7. Definition of the angles used to calculate the trajectory of a disclination in the
Nehring-Saupe expression.
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Comparison of the trajectories of the calculated and simulated s= + 1 disclinations. ¢y_g is the
value of ¢ calculated using the Nehring—Saupe expression and ¢, is the value as measured
from the simulations.

a0 20 40 60 80 100 120 140 160 180
Defect ¢ O —47 —76 72 —23 77 223 424 653 900
a ¢, O 0 0 0 0 95 255 420 650 900
Defect ¢ O 247 476 672 823 924 972 966 946 900
b .0 200 400 600 800 900 900 900 900 900
Defect ¢ys O 100 200 300 400 500 600 700 800 900
¢c ¢, O 100 160 280 400 S80 630 680 830 900

2.2.2. Investigation of s=1 disclinations

Given that the energy of an s= +1 disclination is equal to four times that of an
s= +1 defect (c.f. §2.2.1), it is to be expected that an s= + 1 defect would decompose
into a pair of s= +% defects and likewise an s= —1 into two s= —3% defects. Such
decomposition has been modelled for a single s= + 1 defect placed at the centre of the
2/2 dimensional model. The model was initialized as a plane, radiating field, but was
then permitted to run with free (i.e. orientationally unconstrained) boundary con-
ditions and with equal elastic constants. Figure 8 (a(i)) shows the initial director field
around the defect, while figures 8 (b (i)) and (c (i)) show the decomposition and repulsion
between the two s = +4 defects as the model relaxes. The two defects would, of course,
repel each other out of the model after longer relaxation periods than those shown.
Figures 8 (a(ii)) to 8 (c(ii)) are different presentations of the same structures, the height
of the vertical axis being equivalent to the distortion energy within each cell cluster.

The next step is to attempt to force an s= + 1 defect by fixing the orientations of the
boundary cells in accord with the radial director pattern. Figure 9 (a) shows that again
there are two repelling s= +3 defects, although in this case the disclinations are
retained within the field by the boundary settings irrespective of the number of
relaxation iterations. Figure 9 (b) shows the effect of introducing a splay energy 100
times that of bend. Not surprisingly, there is no observed propagation of the radial
orientation in from the boundaries, where it is set, as such a field is very rich in the splay
distortion, However, two s = +1 disclinations can again be identified. Figure 9 (c) is the
equivalent model, but with bend now equal to 100 times that of splay. Both the
boundary conditions and the relative ease of the splay distortion conspire to give the
+ 1 defect at the centre, although it is perhaps possible to view this defect as two closely
spaced s =1 singularities. (Note that this figure which happened to be calculated using
equation (5) rather than the refined version, equation (12), shows some degree of lattice
print through, in that the orientations of the directors on a circle drawn within the
model do not change orientation completely linearly on moving around that circle.)

3. 2/3 Dimensional simulations
The examples considered in §2 have shown that for both s=+1 and s=+1
disclinations, the 2/2 dimensional model behaves correctly, predicting structures which
are the same as those which can be calculated analytically (for example, [16]) for such
comparatively straightforward geometries. Before moving onto 3/3 dimensional
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Figure 8. Anillustration of the instability of an s= + 1 disclination in 2/2 dimensions when the
elastic constants are equal. (a (i) shows an s= + 1 radial disclinatton placed on the lattice.
(b(i)) The decomposition of the structure into two s= +% defects. (c(i)) Their mutual
repulsion. Figures (a(ii)(c(ii)) are a different presentation of the same structures, the
height of the vertical axis being equivalent to the distortion energy within each cell cluster.
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(c) SP=1, BE=100. The disclination is only stable in (c), forming preferentially s= +1
disclinations in (a) and (b). Very close inspection of this figure shows some degree of lattice
print through in that the orientations of the directors on a circle drawn within the model

do not change uniformly on moving round the circle.

Figure9. Ans=+1,9
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In these simulations each vector is again confined to lie in the same plane and a
E

simulations, it is helpful to consider an intermediate, 2/3 dimensional stage as a means
cuboid is formed from stacking such planes on top of each other. Within each plane,

of introducing the twist elastic constant.
which may be solved as before to find the optimum orientation of the central cell.

vectors are still constrained to lie parallel to the same plane this interaction is pure

interaction between the central vector and the planes above and below. Since all the
twist. For the lattice shown in figure 10 the total energy is:

there exists a combination of splay and bend distortions as before, but there is now an
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Figure 10. Cell cluster in 2} dimensions showing the imposed planar constraint.

As an illustration of the twist between layers figure 11 (@) shows a stable ‘all twist’
structure. It has been modelled for equal elastic constants with orthogonal alignment at
the top and bottom surfaces and free boundary conditions elsewhere, a geometry
reminiscent of that of the twisted nematic cell. The figure comprises orthogonal
sections showing both the top surface and two elevations. It may be observed that the
twist is uniform and continuous, as expected where the elastic constants are equal [ 20].
Figure 11 (b) shows a similar figure, this time of a microstructure developed where the
twist constant is very high compared to that of splay or bend (TW=100, BE=1 and
SP=1) and without any fixed boundary condition, in addition to the constraints
implied by 2% dimensions. In order to minimize twist in this case, the model has
developed excellent matching of the directors from plane to plane in the z direction,
which is most clearly seen from the edge on views. Since the bend and splay elastic
constants are very low in comparison, the model, at the stage of relaxation shown, has
only poorly developed order within the x—y layers. It should be noted that such
structures are highly unlikely in nematic liquid crystals, since in reality, the twist
constant is usually lower than that of bend and splay.

4. 3/3 Dimensional simulations

4.1. The energy potential in three dimensions

In order to model liquid crystalline structures with greater realism, the simulation
must be extended to 3/3 dimensions. Compared with the 2/3 dimensional case, the
directors will be able to change orientation in three rather than two dimensions. It has
become apparent that for 3/3 dimensions, the algebra is most readily handled in terms
of vectors (and thus cartesian coordinates) rather than angles as in the 2/2 dimensional
case. When the elastic constants are all set equal to unity, the energy between two
neighbouring cells may be expressed as the square of the modulus of the cross product
of the two directors. Thus the interaction potential between a central vector, ¢, and its
six neighbouring vectors, n;,, may be written

E=i§:1 le x n;?, (16)
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or, in cartesian coordinates

6
= Z [(x:y. “‘Yixc)z +( yizc_ziyc)z +(zix,— xiZc)2]9 (17

where x., ¥, and z, are the coordinates of the central vector and x;, y; and z; are the
coordinates of the neighbouring vectors.

Inclusion of the elastic constants into the energy expression is most conveniently
managed in 3/3 dimensions by resolving the vectors onto the three principal
orthogonal planes. The energy expressions are then written as the sum of three, two
dimensional expressions

On the x—y plane

E,, =1 i (BE ((&)2 + <&)2) +SP ((ﬁ)z + (ﬁ)z)) (xye—yixe)? along y
2= l; L. l; I
3 5 (oe(G) G esr (G () oo snes

[
+ Z TW(xiyc—yixc)z' along Z
i=5

On the z—x plane

sz= i TW(zixc '—xizc)z along y
=1
na li I L )
+1 26: <BE <<E‘—>2 + <Z—°>2> +SP ((ﬁ>2 + (ﬁ>2>> (zx,—x;z.)* along z
255 I [ l; I

On the y—z plane

ORI o)

4
+.Z TW(yiz,—Yiz.)” along x (20)

3 5 oG+ ) Jrorl () +(2) o o

where ; is the length of the projection of the ith neighbouring vector on to each of the
planes, and I, the projected length of the central vector.
The total energy is given by

E=E, +E, +E,,

and it may be noted that when the elastic constants are equal, the relation reduces to
expression (17).

Nln—-
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4.2. Performance of the model in 3/3 dimensions
The remainder of this paper examines the performance of the model in 3/3
dimensions, comparing it where possible with experimentally observed microstruc-
tures. Finally, its application in elucidating structures that are not yet fully understood
is considered and the scene set for future work.

T I ANSNSN S+ s mmmm—m e~V L L v s mmr 2 )]
[ W N R N N I P I I I A AL BN IR S 2P 2 2 A B
VANNSS SN e s s s me s ANNSSSs o 2 NN
S N N N - S W R 2 T W W N N N N N W W TR O W N Y
NANSNSSsmmem—e e VN VY v s 0 VNNANSANNN NN NN Y
\\\\\ss———az/[lpl|:-~\\\\\\\\\\\\\\
R e e et i AT 2 A B R R L e T S L L
NS SN SN SSmmmemuwmr Sl ) ] D 1 4 e =N ™SS NN N NN NN
NN NSNS Smumumuwnr o f S L ] ] ] 7@ emmmmis s SN N S SN NN N NN
NNSNSN NS r s/l 1T 7=~ ~ 5 S NN SN NN
AT i P AP A A A S0 B S I B B A R T T B T
NNSNSSSamwmerr2777 7018V VNV G0 e v
(NN R R a4 2 2 2 T T T Y Y. W W W W O T T T R R R S T Y
v s s s e s/ 0PV VNNNNNNNN N e e
BRI Rt A v v Ay A Bl B B UR SR SR N A N A R R D L T T T I R
h v vz 2777 81 VAN NNNNANNNNNN N NN
NV Vs s 772777708 1V VNNNANANNNNNNNNY NN Y
N1 7 /7777777727080 10 V8NN NAMNAMNNYNYAYNNNAVAL L
NV 11 /7727272777770 00V VAVNNNAMNAYNNNANNANNAVY
V1117777777777 VNNV )
V1177777777777 0 L0V VNANNVANANNNANNANNAN LY
Vevrvrvrrevzvrzzs7z7z7700 0 8V VAVNANANNANANNNNL YV LY
¥ evvevrez7/4 /7777272001 V8V NNVAVNNNNANNNNTL T 22707
SN 2 A AN N N 20 B A T T TR T Y W W VO VO W W WO W W O B R A
SIS ST A B Y N O O T T T WO YO WO W O W WO O OO O O I AR A ST L
S Y TR R T R T T T T T T Y Y O Y Y WO W YO O Y AP S N W WY
I S N N N U N W O N O N O N N O O O O O O W B I S U VR N O
‘B I A N N W W W W WO W U W Y W W W W W W WO WO WO W YOO YR IRE  J I I |
Vil Z~NNAAVAYNNNNANNSNNSNNNNNNNN NS - r vy
V2l « v VUV YV NNNNNNSSNSSNSNANSNNNNNANNNSN s e
F e b 8V NNNSNSSSSSSNANNNNANNANDYNN SN s ey g
y S I T S N L N O O O O N A A
he e vt sSNmmemammma N \\\}V VAV VNS =y}
XL\--..-_——v——s\\\llll!~—a’//l'
TR Rtk a4 U IR S NN .40 A A |
(a)
D5=t1/2 o *
®s=x1 d
.
. .
¢ .
.
® o

Figure 12. (a) x-y section through a 35x35x 35 3/3 dimensional model simulated using
periodic boundary conditions and equal elastic constants. (b) A map of the various defects
in the structure. It can be seen that many more defects have integral than half integral
character as a result of the process ‘escape into the third dimension’.
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4.2.1. Point disclinations

Figure 12 is a slice through a three dimensional structure in which the iterative
relaxation has been terminated after approximately half the number of cycles required
to produce a monodomain. It is accompanied by a ‘disclination map’ which replots the
approximate positions of the integral and half integral defects. The simulation has been
run using periodic boundary conditions and equal elastic constants. The most striking
feature is that there appear to be many more s= +1 defects than s= +1 defects.
However, a single section such as that in figure 12 does not instantly reveal whether
observed defects with strength + 1 are line or point defects, both of which are possible.
In order to distinguish between these two defect types in a general 3/3 dimensional
simulation, a smaller lattice model (of 23 x 23 x 23 cells) was used, again with equal
elastic constants and free boundary conditions. Each of the 69 slices through the three
orthogonal planes was plotted. The ‘cores’ of the defects were marked on each plot,
enabling the cartesian coordinates of all the disclinations to be found and matched in
three dimensions. An example is shown in figure 13 for three orthogonal slides chosen
to intersect at a disclination observed at the point x =10, y=15, z=16. The director
trajectories about this defect reveal that the projection on to the z-x plane has the form
of a radial s= + 1 disclination, while the projections on to the y—z and x—y planes show
s= —1 singularities. Combining these into a three dimensional structure leads to a
point defect composed of s= —1 and s= + 1 components as described by Demus and
Richter [21]. An ‘artist’s impression’ of such a defect is given in figure 14 (a). According
to this model the z—x section in figure 13(c) approximately corresponds to the
‘equatorial plane’ of the defect as shown in figure 14(d) while x—y and y—z slices
approximately correspond to the ‘meridional planes’ in figure 14(b) and (c), respec-
tively. Examination of the z—x slices above and below the central region of the defect
supports the 3/3 dimensional picture, as the directors are observed to point
progressively out of the plane on sections further from the defect, while still retaining
their radial orientation as illustrated in figure 15. Similarly, at displacements along the
x and/or z directions away from the meridional planes, the director field retains its
s= —1 character.

Analysis of other disclinations in this model reveals a marked preponderance of
point over line defects, with the majority of defects having point character. The
development of microstructure as the simulation progresses appears to occur by the
annihilation of pairs of point singularities of opposite strengths.

4.2.2. Modelling of escape into the third dimension

It is possible to envisage a mechanism by which + or — 1 line defects decompose
into a series of point singularities positioned along the original line. This mechanism
has come to be known as ‘escape into the third dimension’ [22,23] and is, of course,
impossible for cither a 2/2 or 2/3 dimensional system.

In order to simulate this process in as controlled a manner as possible, an s= +1,
n =0 disclination (ten layers thick) was generated using the Nehring—Saupe expression
(14). The relaxation simulation was then run from this starting position (shown in figure
16), with the boundary orientations at the vertical edges of the stack fixed. It is apparent
from figure 17 that as relaxation proceeds, the directors at the core of the disclinations
reorient out of the plane normal to the original disclination line. Summation of the total
energy of both the line and escaped configuration of the aggregate confirms that the
escaped structure indeed has the lower energy.
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()

Figure 14. (a) Proposed model of the point defect which passes through the point x= 10, y=15,
z=16. (b) A section of this defect on the x—y plane. This plane is an example of a
‘meridional section through the defect, (c) is the section on the y—z plane. Again this is an
example of a ‘meridional’ section, (d) shows the z—-x plane which is the ‘equatorial’ plane.



11: 05 26 January 2011

Downl oaded At:

54 S. E. Bedford and A. H. Windle

ﬂsn;;::-- P_I\\‘alzz-—
L Y T T S RN L O T Y A A
A S Y W Y Y A - v s N N N NV e - e
NN N - ~ N NN N N s - w NN
[~ N N . LN Y P ™ = = = b NN NN
~ o~ = = P RS P == = = s 7 1 N NN\
R L N T T Y bm v = /71N N NN
L B T Y = 7 7/ 1 VN NN\
Ll S SN N N Y Y Y -~ 7 / 1 1 ¥ N N\
ch VNV T 177774 E_E\X\I////_
\N T /7w NNV oo o
SNANN /== NSNS SV e - e
NONNN N 7 - e m = e v NN NN
™ S S =y N N N NN - s 1 N NN NN
=== 1 ANNNSNN =~~~ 711V NN N
=7/ I ANNNNN ==/ 1V VN NN
ber s 7/ L AVNANANN r sz VNN N
A A A B N U WA VAN s/ 11V ANN
_‘e_l\\\ll..--

L YR Y T BT

A T T A A

NN N N e m s

~ o~ =~ = . [ SRR

2 TP 2 T S R U NN
e = s 1Y NN NN

b= 7 /7 1 1 Y N NN N

X br r s 2 1 1N N N NN

Figure 15. Enlarged z—x projections close to the core of the defect on the layers y=11,13,15,17
and 19, respectively from (a) to (e). The directors point progressively out of the plane on
planes displaced further from the ‘equator’. The equatorial section approximately
corresponds to y=15 (see (c)).

The core of the disclination can escape into both the positive or negative z direction
with equal probability and examples of each are shown in figures 17(b) and (c).
Therefore, in longer models (along the direction of the original line), s= 1 point
disclinations are formed along the axis of the stack as well as at the top and bottom
surfaces. Despite the difference that the model is a square prism rather than a cylinder,
such simulations mimic well the capillary tube experiments of Kléman and co-workers
[23,24] in which arrays of point disclinations were observed along the axis of thin
capillary tubes, as shown in figure 18. This model is the only one considered so far
which includes a free surface, and it has been calculated without involvement of the
surface elastic constant, K ,,. While such a modification may well have influenced the
trajectories in the vicinity of the free surface, it does not detract from the demonstration
that the current approach to modelling successfully predicts the phenomenon of escape
in capillary tube type geometries.

The prediction of Kléman [2] that neither structures in which the splay and bend
elastic constants are very different, nor those which have high bend energy, undergo
escape, can be tested using the same configuration as above. The high bend energy case
(BE =100, SP = TW=1) remains stable in the two dimensional splay rich ‘star’ starting
configuration, indicating that s= 1 line defects are stable in 3/3 dimensions under these
conditions. For high splay energy (SP =100, BE = TW=1), on the other hand, the star
structure splits into two planar s=3% disclinations (‘archways’ which are rich in bend)
with no out of plane perturbation, as shown in figure 19. The structure therefore
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Figure 16. Starting configuration for the simulation of escape into the third dimension.

(@) shows schematically the planes in (b) and (c): (b) is the defect as seen on the x—y plane

and (c) the defect on the y-z plane at the position shown.
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Figure 17. (a) The top (x—y) surface of an escaped s= +1 disclination simulated for SP=BE
= TW and fixed radial boundary conditions. The directors ‘escape’ out of the plane at the
centre of the defect. Escape can occur in either the positive or negative z directions as
shown in (b) and (c).
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Figure 18. The central plane of point disclinations in a capillary tube; (@) shows the observed
[23] and (b) the structure simulated with equal elastic constants and fixed radial boundary
conditions.
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Figure 19. The x-y projection of the disclination in figure 17 having relaxed with fixed radial
boundary conditions and elastic constants SP=100, BE=1 and TW= 1. The structure
does not undergo any deformation into the third dimension, but dissociates into two s =73
disclinations.
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Figure 20. Sections through a radial s=1 point defect simulated with SP=1, BE=100 and
TW=1.

minimizes splay in an analogous manner to the two-dimensional case. This structure
has been referred to as ‘planar polar’ by Allender et al. [25] in a paper in which its
energy is compared with that of escaped structures as a function of the strength of
boundary anchoring and the surface elastic constant K ,,. Similar configurations have
been observed in polymer liquid crystal display devices under conditions of high splay
and appropriate anchoring energies [26], although in the case of the simulations using
a square cross-sectioned lattice it should be noted that the s= + % disclinations have a
marked preference for the corners, presumably because in this way they can get further
apart from each other.

4.2.3. Stability of point defects for differing elastic constants

Point defects are most usually observed in nematic droplets [27, 28] or at a nematic
isotropic interface [29]. A radial (hedgehog [27]) point disclination can be stabilized on
a 35 x 35 x 35 lattice by fixing the orientation of the boundary cells to point radially
inwards to the centre. This is the 3/3 dimensional analogue of the s=1 star disclination
described in § 2. ITn order to favour the splay rich defect, the splay energy is set equal to
that of twist, but with the bend energy 100 times greater. As expected, the point defect
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Figure 21. (a) An x—y slice through a 3/3 dimensional simulation using free boundary
conditions and SP=10, BE=1 and TW=1. The simulation was terminated after
approximately half the iterations required for a monodomain. More s=14 defects are
observed than s=1 point defects because the higher splay energy means that escape into
the third dimension is not energetically favourable. (b) The map showing the location of
the integral and half integral defects.

forms readily and is shown as a series of sections of the x—y plane in figure 20. The defect
is stable and undergoes no change when the boundary conditions are relaxed. Unlike
the 2/2 dimensional case, the defect is also observed to be stable when the elastic
constants are equal, as has been predicted from the continuum theory [27].

In aliquid crystalline polymer, the splay constant is thought to be much higher than
that of either bend or twist [5]. In figure 21 a slice is shown through the x—y plane of a
simulation using free boundary conditions in which the splay elastic constant is equal
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to ten times that of bend and twist. In contrast to the case of equal elastic constants,
there are now more s= +3 disclinations than s= + 1 point disclinations. This may be
accounted for by the requirement of both bend and splay for this process to occur [2].

4.3. Application of the model to the texture seen in thin films of high molecular weight
polyesters

In many of the situations to which the model has been applied, the splay, twist and
bend energies have been equal and the modelling is thus more relevant to small
molecule systems than polymers. However, the model appears to operate successfully
in predicting known textures, and is also in agreement with analytical predictions of
direct fields where these are available. The confidence thus acquired has led us to use
it to address the long standing issue of the fine-scale textures observed in high
molecular weight thermotropic copolyesters of the ‘Vectra’ type. We have previously
[30] reported a series of microstructural observations which suggested that the fine-
scale (so called ‘tight’) textures are disordered counterparts of the well-characterized
banded texture, and that in each case the planar boundary conditions at the top and
bottom surfaces of the sheet sample propagate through the polymer to produce a layer-
like, fissile structure.

CNNN NN’ P ol et - -
ANNN VYV /P P P r v vm e e =
1 0 /PP P o’ o e -
VPSS e - - -
B P A P e P P et o wm = =

%

Figure 22. Edge-on views of two structures at equivalent stages of development with planar
boundary conditions at the top and bottom surfaces of the diagram. In (a), the splay, twist
and bend energies are set equal, while in (b) splay is set to be 100 times the energy of the
other two distortions. The planar boundary conditions propagate to a much greater depth
when splay is high.
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Figure 23. x—y Slices through successive layers of a 3/3 dimensional model simulated using the
elastic constants SP =100, BE =1 and TW=1 and terminated after approximately half the
iterations required for a monodomain. Boundary conditions are planar on the top and
bottom surfaces and periodic elsewhere. The structure forms a layered morphology in
which there is little matching from layer to layer and a sinuous trajectory within the layers.
The hatching in the inset diagrams shows regions which would appear dark if the structure
was to be viewed through crossed polars orthogonal to the page.

Following an indication by Meyer [31] that, in cases where the splay energy is high
such as with polymers, the splay component of deformation will be much more diffuse
than either twist or bend, the propagation of planar boundary conditions was modelled
for two limiting conditions: (i) equal distortion energies (splay = twist = bend); (ii) splay
energy one hundred times that of bend and twist. These two simulations are shown in
figure 22, each model having run for approximately the same number of cycles. It is
clearly apparent that the planar surface orientation exerts its influence to a much
greater depth in the specimen with the high splay energy. The lower bend and twist
energies mean that monodomain order is not developed within the layers. Figure 23
shows examples of the structures which are developed in the layers, the lateral
boundary conditions in this case being periodic. The x—y sections shown in (a) and (b)
are neighbours in the stack but are observed to exhibit little matching with each other
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since twist is set to be a low energy compared with splay. The structure may therefore be
considered as fissile layers lying parallel to the top and bottom surfaces. Within the
layers the directors are observed to follow sinuous trajectories containing regions of
considerable bend, but only very gentle splay. This undulating structure is very
reminiscent of the banded [32] and tight textures [3,30] observed in thermotropic
copolyesters, although it should be emphasized that the model makes no predictions
with respect to the size-scale of the structure. The simulation has not yet been run with a
preferred starting orientation commensurate with a shear axis, and thus long range,
regular banded textures which must also involve through-thickness orientational
correlation, have not yet been generated.

Nevertheless, the modelling developed so far indicates that the fissile nature of films
of high molecular weight main chain thermotropics without flexible spacers is related
to the occurrence of both tight and banded textures, and that all three features stem
from the high splay distortion energies characteristic of these polymers.

5. Conclusions

(1) Itis possible to simulate microstructures on two dimensional lattices that are in
good agreement with those predicted by the continuum theory, both when the elastic
constants are approximately equal, as in small molecule liquid crystals, and when they
are very different, as is the case for liquid crystalline polymers. For example, the modet
correctly predicts that s=—% disclinations have a morphology that does not
appreciably alter as the ratio of the elastic constants is varied, while that of the s= +3
disclinations undergoes a marked change. There is close agreement between the
trajectories of the simulated s= +1 disclinations and those calculated using the
Nehring-Saupe expression for a variety of elastic constants.

(ii) s=+1 disclinations, whose energies are four times that of the s=+1
disclinations are rarely seen in 2/2 dimensional simulations, unless favoured by both
the ratio of the elastic constants and particular boundary conditions.

(ii)) In 3/3 dimensional models simulated using equal elastic constants, the
majority of disclinations are of type s= + 1, but are point disclinations in contrast to
the 2/2 dimensional case. Point disclinations can be considered as the result of the
process of escape into the third dimension.

(iv) 3/3 dimensional simulations performed with free boundary conditions, and
with the splay energy set very much higher than that of bend or twist exhibit a
predominance of s= +1 line disclinations, because escape into the third dimension is
no longer favoured. Similar simulations performed with planar boundary conditions at
the top and bottom surfaces produce layered microstructures with little correlation
between the layers and a sinuous trajectory within the layers. This behaviour is seen as
having key importance in the formation of both the banded and tight textures observed
in liquid crystalline polymers, while also explaining why they are not observed in small
molecule mesophases where the elastic constants are much more similar.

The simulations, which are in essence iterative steps in the solutions of Frank’s
equation by a finite difference approach, appear able to describe the evolution of the
microstructures which are observed in real liquid crystal systems, both for small
molecules and liquid crystalline polymers. The model is capable of further development
in several ways such as the inclusion of shear and magnetic fields and the simulation of
microstructure developed at finite temperatures.
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