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LIQUID CRYSTALS, 1993, VOL. 15, No. 1, 31-63 

Modelling of microstructure in mesophases 

by S. E. BEDFORD? and A. H. WINDLE* 

Department of Materials Science and Metallurgy, University of Cambridge, 
Pembroke Street, Cambridge CB2 3QZ, England 

(Received 4 August 1992; accepted 6 January 1993) 

Small-molecule liquid crystals show textures which are readily studied at low 
magnification in the optical polarizing microscope. In polymeric liquid crystals, 
however, the textures are often much finer, taxing the microscope’s resolution. 
Nevertheless, studies of microstructure in such polymers have been made and it is 
apparent that they can differ widely both from small-molecule liquid crystals and, 
indeed, from polymer to polymer. This paper sets out to account for these variations 
by exploring the effect on microstructure of the marked differences between the 
magnitudes of the splay, twist and bend elastic constants which are a characteristic 
of many liquid crystalline polymers. We report a computer model which simulates 
the development of microstructure for different ratios of the elastic constants. When 
these are approximately equal, textures characteristic of small-molecule liquid 
crystals result, such as those involving escape into the third dimension with the 
degeneration of line defects into points. When the splay energy is high in 
comparison with bend and twist, as is the case for many thermotropic liquid 
crystalline copolyesters, escape does not occur and half integral disclination lines 
predominate. For simulations involving planar boundary conditions, layered 
microstructures result, frequently with little matching of the orientation from layer 
to layer. Within the layers the trajectory of the orienting units is sinuous. This 
simulated microstructure resembles textures observed in thermotropic copoly- 
esters, studied both in this laboratory and elsewhere. The computer model uses a 
lattice approach which is similar in some respects to that developed by Lebwohl and 
Lasher. It should not be thought of as a molecular scale model, however, but rather 
as one based on assemblies of molecules which share a common director. 

1. Introduction 
The patterns of defects, or texture, apparent when a small-molecule nematic liquid 

crystal is observed in the polarizing microscope have been studied for almost a century 
[l] and many of their features are now well-characterized [2]. Although some of these 
textures occur in polymeric as well as small-molecule liquid crystals, the interpretation 
of microstructure in polymeric mesophases still presents many challenges, since it often 
occurs at a scale approaching the resolution limit of the optical microscope. In 
addition, many of the textures of liquid crystalline polymers vary both from those in 
small-molecule liquid crystals and also from each other. For example, random 
copolyesters [3] may exhibit microstructures which appear as a fine speckle and which, 
although mobile, do not appear to coarsen with time, while polymers containing 
flexible spacers in the main chain show microstructures that relax to  a more 
conventional threaded texture [4]. 
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32 S. E. Bedford and A. H. Windle 

The driving force for the development of specific microstructures in liquid 
crystalline polymers is the minimization of the elastic distortion energy comprising 
splay, twist and bend components (Kl, K ,  and K,, respectively) [S]. Of the various 
cross terms which are only non-negligible at large distortions, and depend on the 
second derivatives of the director, K , ,  is likely to be the most significant. However, 
while we have neglected this parameter in this study, we are aware that some 
corrections may be necessary to the predicted director distributions in regions of severe 
distortion such as disclination cores. For thermotropic main chain polymers, the 
highest energy component is most usually splay [6], while for lyotropic main chain and 
smectic side chain polymers bend may be the largest. We have developed a model that 
simulates the evolution of microstructure as the material is, in effect, annealed 
isothermally in the nematic phase, while at the same time permitting study of the 
influence of particular disparities in the magnitudes of the three elastic constants. It is 
thus possible to carry out microstructural simulations of both polymeric and small- 
molecule mesophases. This model has been described previously for the case of 2 /2  
dimensions and equal elastic constants [7] and is extended here to include more 
general three dimensional structures and disparate values of the elastic constents. 

The model consists of a lattice of directors, represented by unit vectors, whose 
centres are fixed on the sites of a primitive cubic lattice while their orientations are 
allowed to vary in three dimensions. Annealing is simulated by minimizing the energy 
of a given director with respect to its nearest neighbours. This approach shares many 
similarities with that initiated by Lebwohl and Lasher [S] and developed by Allen and 
Wilson [9] and Denham and co-workers [lo]. An important difference, however, is 
that those models are approximately molecular in scale, while the model described here 
is supramolecular, describing ordering and thus microstructures over much greater 
distances than would be possible using existing molecular modelling techniques. This 
microstructural model forms a bridge between molecular modelling and the simulation 
of observed properties. 

It has previously been shown [7] that the interaction potential between two cells 
can be modelled as the square of the sine of the angle between their directors. When the 
elastic constants are equal this potential is reduced, for sma!l angles, to a simple average 
of the orientations with respect to some arbitrary axis. This ‘averaging algorithm’ is 
very efficient computationally but is not valid when the elastic constants are not equal 
and so, for consistency, it is not used in any of the simulations described in this paper. 

We have considered three different constraining lattices. 2/2 dimensional simul- 
ations are defined as those based on a square lattice containing N cells, in which all the 
vectors are constrained to lie in the same plane, the term 2/2 thus implying that the 
directors are free to rotate in two dimensions in the plane of a two dimensional model. 
In simulations termed 2/3 dimensional, the vectors are again confined to a plane, but 
this time the lattice is three dimensional cubic, containing N cells. Both of these 
lattices simulate planar textures. In order to model more general structures, the model 
is extended into 3/3 dimensions by using a cubic lattice and allowing the vectors 
complete rotational freedom. 

It is also important to address the issue as to the degree to which the algorithm, 
which is essentially an iterative method for the three dimensional solution of the Frank 
equations, provides a useful model of the relaxation processes observed in liquid 
crystalline microstructures. In [7], account is given of the effect of reorienting the 
central director of any cell group visited through only a small proportion of the angle 
required to reach the minimum energy position. It was found that, beyond slowing the 
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Modelling of microstructure in mesophases 33 

computational process, it had little effect on the nature of the microstructures seen 
during different stages of the relaxation sequence. The algorithm is thus considered as 
having a first order capability to model the development of a microstructure, and 
several of the structures to be discussed below do not represent a final, minimum energy 
state, but intermediate developments which are none the less especially relevant to 
polymers in which structures are typically non-equilibrium, being limited kinetically. 
Further refinements of the modelling sequence, in which orientation adjustments are 
made on a fine scale and limited to favourable local energy gradients, are currently 
being introduced into the algorithms and will feature in future publications. 

2. 2/2 Dimensional simulations 
The relaxation algorithm for 2/2 dimensional simulations has been discussed briefly 

in a previous paper [7], but it is useful to outline it again as a logical introduction to the 
more refined treatment which enables the three elastic constants to be handled 
separately. It should also be emphasized that while 2/2 dimensional simulations are 
particularly simple, and demonstrate the development of long range orientational 
order in the absence of Brownian motion (i.e. at 0 K), genuine long range orientational 
order does not occur in such systems at finite temperatures [lo]. 

In general, the starting point for the simulations is the isotropic phase, in which all 
the directors are randomly oriented except for those within the edge cells which are set 
to specific orientations to represent periodic, free or fixed boundary conditions as 
required. Microstructural development proceeds by picking a cell at random and 
calculating the minimum energy position for its given environment of nearest 
neighbours. The chosen vector then moves to this minimum position. Another cell is 
then picked at random and the process repeated. After a given number of cycles, the 
simulated microstructure is plotted and the process continued until no further 
reduction in the total energy of the lattice is achieved. 

The interaction potential can be illustrated by considering the possible rotations of 
two isolated rigid rods fixed with respect to their centres of gravity. Stable equilibrium 
is achieved when the two rods are either parallel or antiparallel while unstable 
equilibrium corresponds to the orthogonal positions. An energy function which has 
been used by previous workers [9], and which has been shown to be a good 
approximation to more rigorous derivations [l 11, is sin’ (0- 4), where 0 and 4 are the 
angles made by the rods in the respective cells to an external reference direction. In 2/2 
dimensional simulations, the simplest treatment using a square lattice means that the 
contribution to the total energy of the structure due to one particular cell can be taken 
as the sum of the interaction energy over the cell’s four nearest neighbours. For the cell 
shown in figure 1, in which the orientation of the central cell is 4 and that of each 
neighbour is 8, the energy is given by 

4 

i =  1 
E =  C sin2(Bi-4), 

and the best orientation of the central cell, +opt, is found by differentiating this 
expression with respect to 4 and rearranging to give 

4 

C sin28, 
tan 24,,, = i: 

C COS28, 
i =  1 
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34 S. E. Bedford and A. H. Windle 

t y  

X 

Figure 1. Definition of the angles used to calculate the interaction energy in equation (1). 

From the shape of the tan 26' curve it can be seen that there are two possible solutions 
for 4,,, occurring between 0" and 180", corresponding to minimum and maximum 
energy orientations. These are substituted back into the original energy expression and 
the lower energy solution chosen. 

Expressions (1) and (2) have been derived for materials in which the elastic constants 
are assumed equal and set to unity. This approximation, which is not unreasonable for 
small-molecule liquid crystals where the elastic constants do not differ greatly, is not 
readily applicable to thermotropic liquid crystalline polymers in which the splay 
constant is usually higher than that of bend and twist [ S ] .  The next step is therefore to 
develop expression (1) to account separately for the different modes of distortion. 

2.1. The splay and bend weighting 
In 212 dimensions, the only possible distortions are splay or bend or combinations 

of these, and their separate influences can be seen by examining the central row of cells 
in figure 2(a). The left hand cell in which the director orientation, denoted by O , ,  is 
horizontal is held, at this initial stage, to have only a bend influence on the central cell 
irrespective of the central director orientation 4. In contrast, the right hand cell in 
which the director, 9,, is vertical has only a splay influence on the central cell. If, 
however, the director of either of these neighbouring cells is at some arbitrary angle, as 
shown in figure 2 (b), then it will influence the central director through both splay and 
bend components, appropriately weighted. For neighbours one and two in figure 2 (b) ,  
this weighting is given by the relationship 

(3) BE C O S ~  ei + S P  sin2 ei, 
where i = 1 or 2. This expression has the appropriate bounding conditions of pure splay 
when Oi = 90" and pure bend when Bi = 0 (as measured from the x axis), together with a 
value of unity for all angles when SP = BE. The coefficients SP and BE are used in 
expression (5) rather than K and K ,  respectively, because it is the ratio of splay to bend 
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Figure 2. (a) Two dimensional lattice considering only the middle row of directors. Oi = O  

influences the director only through bend, while O2 = 90 influences the director only 
through splay. In (b) el, and O2 have arbitrary orientation and interact with the central cell 
through both splay and bend as given in expression (3). In (c) O3 = 0 influences the central 
director through splay and B4=90 bend. The arbitrary e3 and O4 in ( d )  interact through 
both splay and bend as described by expression (4). 

energy that is important in the expression rather than their absolute magnitudes. For 
example, if K ,  = 5 x dyne, values for the small- 
molecule liquid crystal PAA at 120°C [12], S P =  1 and BE=2.02. 

In figures 2(c) and ( d ) ,  the splay and bend influences down a column of cells are 
established. It can be seen that the mode of distortion is reversed with respect to the row 
of cells, so that in figure 2 (c) there is only a splay influence from cell three and a bend 
influence from cell four. Therefore, for arbitrary angles O i ,  the weighting is now given by 

dyne and K ,  = 10.1 x 

SP cos2 Oi + BE sin2 Oil (4) 

where i = 3 or 4. In this way the original sine squared energy expression can be weighted 
by resolving each neighbouring vector into its splay and bend components. For the 
lattice shown in figure 1 

2 4 

i =  1 i = 3  
E = 1 (BE cos' Oi + SP sin' O i )  sin' (Oi  - 4)  + (BE sin' Oi + SP cos' O i )  sin' (Oi - +), ( 5 )  
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36 S. E. Bedford and A. H. Windle 

and energy minimization to find the optimum 4 gives 
2 4 

i =  1 i = 3  
1 (BE cos' 0, + SP sin' 6,) sin 26, + 1 (BE sin' Oi + SP cos' B i )  sin 28, 

1 (BE cos2 6, + SP sin2 0,) cos 26, + 1 (BE sin' 6, + SP cos' 6,) cos 2Oi 
9 (6) tan240,,= 2 4 

i =  1 i = 3  

so that the process of microstructural development by energy minimization can be 
followed as before using the modified expression. 

These splay and bend weightings are in accord with Frank's definition of the splay 
and bend distortions when applied to a two dimensional lattice. From the Frank 
definitions [ 131 

splay: 

bend: 

(7) 

where s1 and s2 are the components of splay, b,  and b, are the components of bend and 
an,, and an, the components of the director in the x and y directions. Therefore, in the 
lattice shown in figure 2, along a row (the x direction), splay is a maximum for xi = 0 as 
in cell 2, while bend is a maximum for yi=O as in cell 1, and down a column (the y 
direction) the mode of distortion is reversed. 

As an example of the use of expressions (5) and (6), consider the row of cells in figure 
3 (a). 6, =o", 6' =45" and the orientation of the central cell, remains to be 
determined. From expression (5) the total energy, E, of the row is given by 

E = (BE cos2 0" + SP sin' 00) sin2 (0" - 4)  +(BE 60s' 45" + SP sin2 45") sin2 (45" - 4), 

(9) 
which is plotted agains the angle, 4, for three different ratios of the elastic constants in 
figure 3(b). The figure shows that the optimum angle of the central cell, 4opt, 
corresponding to the minima on the three curves, is different for each of the three elastic 
constant ratios. These values may be obtained either by reading directly from the plot 
or by substitution into expression (6) in accordance with the computer algorithm. In 
either case, the three different values of 4,,, are (i) 22.5" for SP = BE, spreading the 
defect uniformly between the neighbouring cells, (ii) 45" when BE = 0, so that the only 
distortion is bend and (iii) 13.3" when SP = 0, minimizing the amount of bend. These 
three solutions are sketched in figure 3 (c). 

A potential difficulty is encountered with the model for configurations where 
the directors are separated by exactly go", such as 6, =45", 6' = 135", 6, = 135" and d4 
= 45", because tan 24, as defined by expression (6), is indeterminate. Such exact cases 
are very unlikely to occur during the simulation, however, and so in practice do not 
cause a problem. 

Before proceeding further we should question whether it is reasonable to assess the 
level of splay or bend pertaining to the central director as if it is dependent only on the 
orientation of the surrounding directors. Look again at figure 2 (a). While the influence 
of the director of cell 1 on the central cell will consist only of bend, the effect of the 
orientation of the central director on cell 1 will be a combination of both splay and 
bend, in view of the arbitrary value of 4 chosen in the diagram. It is thus unreasonable 
to assume that the distortion field resulting from the relative orientations of the two 
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( i i i )  SP = 0, BE = 1 ffl = oo = 13.3‘ 

1.5 -. 

3 1 . 2 5  
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0.0 45!0 1ds.o 180 

fl2 = 45’ 

/ 

37 

Figure 3. Example of the algorithm for a row of three cells in two dimensions. In (a) 1 9 ~  =0, 
Q2 =45 and the orientation of the central cell, 4, is to be determined. In (b)  the total energy 
of the central cell is calculated in accordance with expression (5 )  for three limiting ratios of 
the elastic constants. The three values of corresponding to the three elastic constant 
ratios are given in (c). 
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38 S. E. Bedford and A. H. Windle 

directors will be pure bend. We have therefore extended the expressions (3) and (4), the 
weighting of distortion field types, so that they take into account the orientation of the 
central director on an equal basis to that of each of the surrounding directors. Hence 
the expressions (3) and (4) become, respectively 

0 q B E  cos’ Bi + SP sin’ Bi) + 03(BE cos’ $ + S P  sin2 $), 

0 5 ( S P  cos’ Bi + BE sin’ B i )  + O q S P  cos’ $ +BE sin’ $), 
(10) 

(1 1) 

while the relation for the energy in expression ( 5 )  becomes 
2 

i =  1 
E = 0.5 1 ((BE (cos’ Bi + cos’ $) + SP (sin’ Bi + sin’ 4)) sin’ (Oi - $)) 

4 

i = 3  
+ 0.5 ( (SP (cos’ Bi + cos2 $) + BE (sin’ Bi + sin2 4)) sin’ (Bi - 4)). (12) 

The increased algebraic complexity of these more realistic equations has led us to 
adopt a different approach to the determination of the minimum energy value of tp. For 
although expression (12) can be readily differentiated, as could expression (5), the next 
step, which involves the extension of the treatment to 3/3 dimensions, yields equations 
which are distinctly unwieldy. While this work is recorded elsewhere [14], it is not 
developed here, as the alternative iterative approach to the minimization of E ,  has 
proved much more robust in the more complex situations treated below. For the 
iterative method, the director of the central cell is rotated through a completely random 
angle to a trial position and its new energy computed. If this is less than was achieved at 
any previous settings it is accepted. This approach is especially versatile as it permits 
simulations at finite temperatures for levels of structure in which each cell contains at 
most a small group of molecules. Temperature dependent modelling is achieved where 
the acceptance or rejection of a given trial orientation is set to be exponentially 
dependent on the ratio of its energy to the absolute temperature. The modelling of 
larger scale microstructures reported here is equivalent to OK and so only the 
orientation with the lowest value of E ,  is accepted. As the equilibrium structure is 
approached, this algorithm becomes rather sluggish, since few tries are accepted. The 
speed of convergence is enhanced at this point by using, as the simulation develops, 
progressively smaller random increments in orientation with respect to the previous 
setting. This method is described more fully by Allen and Tildesley [l5]. 

In the case where the energy constants are equal, equation (12) reduces to (5),  and 
thus the simulation behaviour is equivalent. However, where splay energy is set to be 
much larger than bend, or vice versa, the use of the modified term for energy in 
expression (12) avoids the phenomenon of lattice ‘print through‘ where the energy 
distribution within a director field, such as that around a disclination, depends to some 
extent on the orientation of the director in relation to the cell axes. 

2.2. Performance of the model with discrete splay and bend elastic coeflcients 
In this section some examples of the model are described for a square lattice of cells. 

This intermediate step is introduced in order to test that the model behaves correctly in 
2/2 dimensions before moving on to the more physically realistic, but computationally 
demanding 3/3 dimensional case. Using a Vax 3 100, the simulation of microstructural 
development, from the totally random isotropic phase through to the ordered 
monodomain, requires approximately 5 min of computing time for a lattice of 35 x 35 
cells. This speed is a reflection of the straightforward energy expression and the 
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Modelling of microstructure in mesophases 39 

relatively small number of cells. The microstructures selected, and if necessary forced 
on the simulation through the choice of appropriate boundary conditions, were 
examples of s = k 1 and s= ti disclinations. The trajectory patterns of these 
disclinations are well-known, both where the elastic constants are the same and where 
they are different [16,17]. It is thus possible to compare readily the simulated and 
analytically derived structures. 

0 
0 

@ 
0 

0 0 s=-l 
0 s = + l  0 

2 

2 

0 
0 

0 

j. 0 

0 s=-l 
0 s=+1 

2 

2 

Figure 4. Typical examples of simulated two dimensional microstructures using free boundary 
conditions, together with schematic plots of the coordinates of the s= +f and s= -4 
disclination cores. The simulations are based on relation (12) and are thus free from print 
through. The values of E are (a) -0.98, (b) 0.98, (c) 0.0, representing high splay, high bend, 
and equal splay and bend energies respectively. 
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40 S. E. Bedford and A. H. Windle 

2.2.1. Simulation o f s=f  disclinations with discrete elastic constants 
s = kf disclinations are energetically favourable in 2/2 dimensions because the 

energy of a disclination varies as the square of its strength. As a result, this disclination 
type predominates in two dimensional simulations, irrespective of whether the elastic 
constants are equal or different. Figure 4 shows typical examples of simulated two 
dimensional microstructures, together with schematic ‘disclination maps’ that plot the 
coordinates of the s = + f and s = - + disclination cores in each case. They have all been 
obtained for simulations with free boundary conditions and each represents the 
structure after approximately half the number of iterations required to convert the 
random starting arrangement into a completely ordered monodomain. In figure 4 (a) 
the splay constant is equal to one hundred times that of bend; the fractional difference 
between the elastic constants, E,  expressed as 

being equal to - 0.98. In figure 4 (b) the relative magnitude of the elastic constants is 
reversed so that E is equal to 0.98, while in figure 4(c) the two constants are equal, E 

being equal to 0. ( E  is sometimes referred to as the elastic anisotropy [16].) 
In all 2/2 dimensional simulations, it was observed that there were approximately 

equal populations of s = -$and s = +*disclinations, both having the same energy, and 
that they adopted a spread of orientations in the absence of external fields. The shape of 
the simulated disclinations did not change as a function of their orientation with 
respect to the lattice, however, and so could be readily compared for the different values 
of E. Comparison of s = -3 disclinations, whose cores are positioned at N1, N2 and N3, 
and the s = +f disclinations at PI, P2 and P3, shows that the director field surrounding 
the s =  -+ defects does not alter appreciably with E,  while that of the s=  +f defects 
undergoes a considerable change. This marked difference in behaviour can be seen 
most clearly by reference to the line drawings in figure 5 (i) and in figure 6 (i) in which 
continuous lines have been traced over the director patterns from the selected 
disclinations P1, P2 and P3 and N1, N2 and N3, respectively. The drawings are in the 
same orientation as the disclinations in the simulated microstructures and the 
approximate area which has been traced is marked on the disclination maps in figure 4 
by hatching. It can be seen that the three s =  +$ defects are associated with very 
different director trajectories, while the morphology of the s = -f defects remains fairly 
constant, although it is affected slightly by the distorting effect of their neighbouring 
defects. 

The constant morphology of the simulated s = -4 disclinations, despite variations 
in E, is in agreement with the continuum theory which predicts that the symmetry of this 
defect prevents significant change in structure [IS]. It may also be noted that at both 
extremes of E, the simulated director field cannot adjust to remoye completely the more 
costly distortion, at least in 2/2 dimensions, and this again is in agreement with theory 
[IS]. The marked morphological variation of s = +$ disclinations has been observed in 
nematic liquid crystals using transmission electron microscopy [18] and is also 
predicted from minimization of the Frank distortion energy expression as described by 
Nehring and Saupe [16]. 

In order to determine how closely the shape of the simulated disclinations matches 
theoretical predictions, director trajectories of both s = +3 and s = -4 defects were 
calculated and are represented in figures 5 (ii) and 6 (ii). These analytically determined 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Modelling of microstructure in mesophases 41 

I \ \ \ \ \ \ \ .  

Figure 5 .  (a( i )Hc (ii)) Tracings of the s = +3 disclinations identified by hatching in figure 4. 
(a  (iiHc (ii)) Disclinations with the corresponding elastic anisotropies determined analyti- 
cally from equation (14). Each of the disclinations is in the same orientation as observed in 
figure 4. The simulated and calculated structures are in good agreement. 
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Figure 6. (a(i)Hc(i)) Tracings of the s= -4 disclinations shown by hatching in figure 4. (u( i i ) t  
(c (ii)) disclinations with the same elastic anisotropies as calculated from the continuum 
theory. Again, all thc disclinations are in the same orientations as those in figure 4. 
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Modelling of microstructure in mesophases 43 

director fields have the same value of E as the corresponding simulations in figures 5 (i) 
and 6 (i), but have been obtained by placing vectors onto the lattice in accordance with 
the expression of Nehring and Saupe [16], a procedure that is similar to that 
introduced by Nicholson [19]. The calculated patterns are oriented on the page to 
correspond with those selected from the simulated patterns. 

The Nehring and Saupe equation may be expressed as 

where 4disc is the angle the director makes with the x axis at all points along a line which 
is at an angle, a, to that axis, as defined in figure 7. Co is a constant which rotates the 
disclination, but does not alter its shape, so is set to zero in the calculations. 

It can be seen that for each value of E,  the shape of the simulated disclination pattern 
closely matches the calculated structure. Where SP = 100 and BE= 1 as in figure 5 (a), 
both the simulated and calculated s = +$ disclination have a structure resembling that 
of an archway, containing considerable bend, but very little splay. In figure 5 (b), where 
SP = 1 and BE = 100, both simulated and calculated structures contain only splay, 
resembling a sunrise, again shown as an inset. In figure 6, it can be seen that, like the 
simulated structure, the director trajectory of the s = -+ disclination calculated from 
expression (14) undergoes very little change as the ratio of the elastic constants is varied. 

It is possible to quantify the extent of similarity between the simulated structures 
and those given by the Nehring-Saupe expression by measurement of the angles 4disc  

and c1 as defined in figure 7, for the simulated disclinations, and comparing these values 
with those expected from the expression. The table shows the results of this comparison 
for the three s=  +$ disclinations. The theoretical and simulated data match quite 
closely, although it is difficult to assess the magnitude of the errors which arise from the 
distorting effect of neighbouring disclinations in the model. Corresponding measure- 
ments were not made for the s=  -$ disclinations, because in this case the three 
morphologies were clearly affected more by the distorting effect of the neighbouring 
disclinations than by the difference in the elastic constants. 

Figure 7. Definition of the angles used to calculate the trajectory of a disclination in the 
Nehring-Saupe expression. 
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44 S. E. Bedford and A. H. Windle 

Comparison of the trajectories of the calculated and simulated s=  +f disclinations. 4NS is the 
value of C$ calculated using the Nehring-Saupe expression and 4,,, is the value as measured 
from the simulations. 

a 0 20 40 60 80 100 120 140 160 180 

Defect 4Ns 0 -4.7 -7.6 -7.2 -2.3 7.7 22.3 42.4 65.3 900 
a 4In 0 0 0 0 0 9.5 25.5 42.0 65.0 90.0 

Defect 4Ns 0 24.7 47.6 67.2 82.3 924 97.2 96.6 94.6 90.0 
b $,,, 0 20.0 40.0 600 80.0 900 90.0 90.0 90.0 90.0 

Defect t$N. 0 10.0 20.0 30.0 40.0 500 600 70.0 80.0 90.0 
c 4, 0 10.0 160 28.0 40.0 580 63.0 68-0 83.0 90.0 

2.2.2. Investigation of s = 1 disclinations 
Given that the energy of an s =  & 1 disclination is equal to four times that of an 

s =  +* defect (c.f. $2.2.1), it is to be expected that an s =  + 1 defect would decompose 
into a pair of s=  +3 defects and likewise an s =  - 1 into two s = -4 defects. Such 
decomposition has been modelled for a single s=  + 1 defect placed at the centre of the 
2 / 2  dimensional model. The model was initialized as a plane, radiating field, but was 
then permitted to run with free (i.e. orientationally unconstrained) boundary con- 
ditions and with equal elastic constants. Figure 8 (a(i)) shows the initial director field 
around the defect, while figures 8 (b  (i)) and (c (i)) show the decomposition and repulsion 
between the two s = ++ defects as the model relaxes. The two defects would, of course, 
repel each other out of the model after longer relaxation periods than those shown. 
Figures 8 (a (ii)) to 8 (c (ii)) are different presentations of the same structures, the height 
of the vertical axis being equivalent to the distortion energy within each cell cluster. 

The next step is to attempt to force an s = + 1 defect by fixing the orientations of the 
boundary cells in accord with the radial director pattern. Figure 9 (a) shows that again 
there are two repelling s =  +$ defects, although in this case the disclinations are 
retained within the field by the boundary settings irrespective of the number of 
relaxation iterations. Figure 9 (b) shows the effect of introducing a splay energy 100 
times that of bend. Not surprisingly, there is no observed propagation of the radial 
orientation in from the boundaries, where it is set, as such a field is very rich in the splay 
distortion, However, two s = +& disclinations can again be identified. Figure 9 (c) is the 
equivalent model, but with bend now equal to 100 times that of splay. Both the 
boundary conditions and the relative ease of the splay distortion conspire to give the 
+ 1 defect at the centre, although it is perhaps possible to view this defect as two closely 
spaced s=+ singularities. (Note that this figure which happened to be calculated using 
equation (5) rather than the refined version, equation (12), shows some degree of lattice 
print through, in that the orientations of the directors on a circle drawn within the 
model do not change orientation completely linearly on moving around that circle.) 

3. 2/3 Dimensional simulations 
The examples considered in Q 2 have shown that for both s =  k4 and s = & 1 

disclinations, the 2/2 dimensional model behaves correctly, predicting structures which 
are the same as those which can be calculated analytically (for example, [ 161) for such 
comparatively straightforward geometries. Before moving onto 3/3 dimensional 
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Figure 8. An illustration of the instability of an s = + 1 disclination in 2/2 dimensions when the 
elastic constants are equal. (a (i)) shows an s = + 1 radial disclination placed on the lattice. 
(b(i)) The decomposition of the structure into two s=  +* defects. (c(i)) Their mutual 
repulsion. Figures (a (iiHc(ii)) are a different presentation of the same structures, the 
height of the vertical axis being equivalent to the distortion energy within each cell cluster. 
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(4 
Figure 9. An s = + 1, q = 0 disclination simulated using (a) BE = 1, S P  = 1; (b)  SP = 100, BE = 1;  

(c) S P =  1, B E =  100. The disclination is only stable in (c), forming preferentially s=  ++ 
disclinations in (a) and (b). Very close inspection of this figure shows some degree of lattice 
print through in that the orientations of the directors on a circle drawn within the model 
do not change uniformly on moving round the circle. 

simulations, it is helpful to consider an intermediate, 2/3 dimensional stage as a means 
of introducing the twist elastic constant. 

In these simulations each vector is again confined to lie in the same plane and a 
cuboid is formed from stacking such planes on top of each other. Within each plane, 
there exists a combination of splay and bend distortions as before, but there is now an 
interaction between the central vector and the planes above and below. Since all the 
vectors are still constrained to lie parallel to the same plane this interaction is pure 
twist. For the lattice shown in figure 10 the total energy is: 

2 

i= 1 
E =0.5 (BE (cos’ Oi + cos’ 4) + SP (sin’ Oi + sin’ 4)) sin’ (0, - 4) 

4 

+0.5 (SP (cos’ Oi + cos’ 4) + BE (sin’ Oi + sin’ 4)) sin’ (Oi - 4) 
i = 3  

6 

i = 5  
+05 2 TWsin’ (Oi--4), 

which may be solved as before to find the optimum orientation of the central cell. 
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Modelling of microstructure in mesophases 47 

Figure 10. Cell cluster in 24 dimensions showing the imposed planar constraint. 

As an illustration of the twist between layers figure 11 (a) shows a stable ‘all twist’ 
structure. It has been modelled for equal elastic constants with orthogonal alignment at 
the top and bottom surfaces and free boundary conditions elsewhere, a geometry 
reminiscent of that of the twisted nematic cell. The figure comprises orthogonal 
sections showing both the top surface and two elevations. It may be observed that the 
twist is uniform and continuous, as expected where the elastic constants are equal 1201. 
Figure 11 (b) shows a similar figure, this time of a microstructure developed where the 
twist constant is very high compared to that of splay or bend ( T W =  100, BE = 1 and 
SP= 1) and without any fixed boundary condition, in addition to the constraints 
implied by 2 i  dimensions. In order to minimize twist in this case, the model has 
developed excellent matching of the directors from plane to plane in the z direction, 
which is most clearly seen from the edge on views. Since the bend and splay elastic 
constants are very low in comparison, the model, at the stage of relaxation shown, has 
only poorly developed order within the x-y layers. It should be noted that such 
structures are highly unlikely in nematic liquid crystals, since in reality, the twist 
constant is usually lower than that of bend and splay. 

4. 3/3 Dimensional simulations 
4.1. The energy potential in three dimensions 

In order to model liquid crystalline structures with greater realism, the simulation 
must be extended to 3/3 dimensions. Compared with the 213 dimensional case, the 
directors will be able to change orientation in three rather than two dimensions. It has 
become apparent that for 3/3 dimensions, the algebra is most readily handled in terms 
of vectors (and thus Cartesian coordinates) rather than angles as in the 2/2 dimensional 
case. When the elastic constants are all set equal to unity, the energy between two 
neighbouring cells may be expressed as the square of the modulus of the cross product 
of the two directors. Thus the interaction potential between a central vector, c, and its 
six neighbouring vectors, n ,  may be written 

6 

E =  1 Ic x nilz, 
i= 1 
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Figure 11. (a) A uniform smooth twist developed in a 24 dimensional lattice for orthogonal 
boundary conditions on the top and bottom surfaces and equal elastic constants. (b)  A 
simulation using free boundary conditions and SP= 1, B E  = 1 and TW= 100. There is 
good matching from layer to layer but little in-layer order. 
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or, in Cartesian coordinates 
6 

i =  1 
E =  C C(XiYc-Yixc)’ + ( ~ i z c - z i Y c ) ’  +(Zixc-xizc)’I, (17) 

where x,, y ,  and z ,  are the coordinates of the central vector and x i ,  y i  and zi are the 
coordinates of the neighbouring vectors. 

Inclusion of the elastic constants into the energy expression is most conveniently 
managed in 3/3 dimensions by resolving the vectors onto the three principal 
orthogonal planes. The energy expressions are then written as the sum of three, two 
dimensional expressions 

On the x-y plane 

Ex, =’ 2 i = l  (BE ((ty + (f)’) + SP (ky + (’)’ )) (xiyc -yixc)2 along y 

+ A  2 i = 3  ( B E ( @ ~ + ~ ~ ) + S P ( ( ~ ~ + ( ~ ) ’ > > ( x i y , - y i x c ) ’  along x (18) 

6 + 2 TW(xiyc-y iXc)’ .  
i = 5  

On the z-x plane 

along z 

L 

E,, = 1 T W ( Z ~ X ,  - x~z,)’ 
i =  1 

along y 

+A 2 i = 3  ( B E  (@y + k)’) + SP (61 + (f)’)) (z ixc - xiz,)’ along x (19) 

+ A  2 i = 5  (BE (ey + k)’) + S P  (@r + k)’)) ( z ix ,  -xizc)2 along z 

On the y-z plane 

A 

+’ 2 i z . 5  f (BE ((‘y + (:y) + s P  (( ?>’ + (fy)) ( y i z ,  -yizc)2, along z 

where l i  is the length of the projection of the ith neighbouring vector on to each of the 
planes, and I ,  the projected- length of the central vector. 

The total energy is given by 

E = Ex, + Ex, + E y z ,  

and it may be noted that when the elastic constants are equal, the relation reduces to 
expression (1 7). 
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4.2. Performance of the model in 313 dimensions 
The remainder of this paper examines the performance of the model in 313 

dimensions, comparing it where possible with experimentally observed microstruc- 
tures. Finally, its application in elucidating structures that are not yet fully understood 
is considered and the scene set for future work. 

Figure 12. (a) x-y section through a 3 5 x 3 5 ~ 3 5  3/3 dimensional model simulated using 
periodic boundary conditions and equal elastic constants. (b)  A map of the various defects 
in the structure. It can be seen that many more defects have integral than half integral 
character as a result of the process ‘escape into the third dimension’. 
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4.2.1. Point disclinations 
Figure 12 is a slice through a three dimensional structure in which the iterative 

relaxation has been terminated after approximately half the number of cycles required 
to produce a monodomain. It is accompanied by a ‘disclination map’ which replots the 
approximate positions of the integral and half integral defects. The simulation has been 
run using periodic boundary conditions and equal elastic constants. The most striking 
feature is that there appear to be many more s =  &- 1 defects than s= -k$ defects. 
However, a single section such as that in figure 12 does not instantly reveal whether 
observed defects with strength -k 1 are line or point defects, both of which are possible. 
In order to distinguish between these two defect types in a general 3/3 dimensional 
simulation, a smaller lattice model (of 23 x 23 x 23 cells) was used, again with equal 
elastic constants and free boundary conditions. Each of the 69 slices through the three 
orthogonal planes was plotted. The ‘cores’ of the defects were marked on each plot, 
enabling the Cartesian coordinates of all the disclinations to be found and matched in 
three dimensions. An example is shown in figure 13 for three orthogonal slides chosen 
to intersect at a disclination observed at the point x = 10, y =  15, z= 16. The director 
trajectories about this defect reveal that the projection on to the z-x plane has the form 
of a radial s = + 1 disclination, while the projections on to the y-z and x-y planes show 
s= - 1 singularities. Combining these into a three dimensional structure leads to a 
point defect composed of s = - 1 and s = + 1 components as described by Demus and 
Richter [21]. An ‘artist’s impression’ of such a defect is given in figure 14 (a). According 
to this model the z-x section in figure 13(c) approximately corresponds to the 
‘equatorial plane’ of the defect as shown in figure 14(d) while x-y and y-z slices 
approximately correspond to the ‘meridional planes’ in figure 14(b) and [c), respec- 
tively. Examination of the z-x slices above and below the central region of the defect 
supports the 3/3 dimensional picture, as the directors are observed to point 
progressively out of the plane on sections further from the defect, while still retaining 
their radial orientation as illustrated in figure 15. Similarly, at displacements along the 
x and/or z directions away from the meridional planes, the director field retains its 
s= - 1 character. 

Analysis of other disclinations in this model reveals a marked preponderance of 
point over line defects, with the majority of defects having point character. The 
development of microstructure as the simulation progresses appears to occur by the 
annihilation of pairs of point singularities of opposite strengths. 

4.2.2. Modelling of escape into the third dimension 
It is possible to envisage a mechanism by which + or - 1 line defects decompose 

into a series of point singularities positioned along the original line. This mechanism 
has come to be known as ‘escape into the third dimension’ [22,23] and is, of course, 
impossible for either a 2/2 or 2/3 dimensional system. 

In order to simulate this process in as controlled a manner as possible, an s= + 1, 
q = 0 disclination (ten layers thick) was generated using the Nehring-Saupe expression 
(14). The relaxation simulation was then run from this starting position (shown in figure 
16), with the boundary orientations at the vertical edges of the stack fixed. It is apparent 
from figure 17 that as relaxation proceeds, the directors at the core of the disclinations 
reorient out of the plane normal to the original disclination line. Summation of the total 
energy of both the line and escaped configuration of the aggregate confirms that the 
escaped structure indeed has the lower energy. 
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Figure 13. Slices through the (a) z =  16 plane, (b )  the x =  10 plane and (c) the y =  15 plane, 
together with disclination maps for a 23 x 23 x 23 simulation using free boundary 
conditions and equal elastic constants. The figure shows three orthogonal projections of 
the defect passing through the point x =  10, y =  15, z =  16. 
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X / 

(d ) 
Figure 14. (a) Proposed model of the point defect which passes through the point x = 10, y = 15, 

z = 16. (b) A section of this defect on the x-y plane. This plane is an example of a 
'meridional' section through the defect, (c) is the section on the y-z plane. Again this is an 
example of a 'meridional' section, (d) shows the z-x plane which is the 'equatorial' plane. 
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7 5. Enlarged z--x projections c.xe to t--: core of the defect on the layers y = 13 , l  
and 19, respectively from (a) to (e). The directors point progressively out of the plane on 
planes displaced further from the ‘equator’. The equatorial section approximately 
corresponds to y= 15 (see (c)). 

The core of the disclination can escape into both the positive or negative z direction 
with equal probability and examples of each are shown in figures 17(b) and (c). 
Therefore, in longer models (along the direction of the original line), s = & 1 point 
disclinations are formed along the axis of the stack as well as at the top and bottom 
surfaces. Despite the difference that the model is a square prism rather than a cylinder, 
such simulations mimic well the capillary tube experiments of KlCman and co-workers 
[23,24] in which arrays of point disclinations were observed along the axis of thin 
capillary tubes, as shown in figure 18. This model is the only one considered so far 
which includes a free surface, and it has been calculated without involvement of the 
surface elastic constant, KZ4. While such a modification may well have influenced the 
trajectories in the vicinity of the free surface, it does not detract from the demonstration 
that the current approach to modelling successfully predicts the phenomenon of escape 
in capillary tube type geometries. 

The prediction of Klkman [2]  that neither structures in which the splay and bend 
elastic constants are very different, nor those which have high bend energy, undergo 
escape, can be tested using the same configuration as above. The high bend energy case 
(BE = 100, SP = T W= 1) remains stable in the two dimensional splay rich ‘star’ starting 
configuration, indicating that s = 1 line defects are stable in 3/3 dimensions under these 
conditions. For high splay energy (SP = 100, BE = T W =  l), on the other hand, the star 
structure splits into two planar s = 3  disclinations (‘archways’ which are rich in bend) 
with no out of plane perturbation, as shown in figure 19. The structure therefore 
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Figure 16. Starting configuration for the simulation of escape into the third dimension. 
(a) shows schematically the planes in (b) and (c): (b) is the defect as seen on the x-y plane 
and (c) the defect on the y-z plane at the position shown. 
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Figure 18. The central plane of point disclinations in a capillary tube; (a) shows the observed 
[23] and (b) the structure simulated with equal elastic constants and fixed radial boundary 
conditions. 
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Figure 20. Sections through a radial s= 1 point defect simulated with S P =  1, B E =  100 and 

T W = 1 .  

minimizes splay in an analogous manner to the two dimensional case. This structure 
has been referred to as 'planar polar' by Allender et al. [25] in a paper in which its 
energy is compared with that of escaped structures as a function of the strength of 
boundary anchoring and the surface elastic constant K 2 &  Similar configurations have 
been observed in polymer liquid crystal display devices under conditions of high splay 
and appropriate anchoring energies [26], although in the case of the simulations using 
a square cross-sectioned lattice it should be noted that the s= +* disclinations have a 
marked preference for the corners, presumably because in this way they can get further 
apart from each other. 

4.2.3. Stability of point defects for d i e r i n g  elastic constants 
Point defects are most usually observed in nematic droplets [27,28] or at a nematic 

isotropic interface [29]. A radial (hedgehog [27]) point disclination can be stabilized on 
a 35 x 35 x 35 lattice by fixing the orientation of the boundary cells to point radially 
inwards to the centre. This is the 3/3 dimensional analogue of the s = 1 star disclination 
described in 5 2. In order to favour the splay rich defect, the splay energy is set equal to 
that of twist, but with the bend energy 100 times greater. As expected, the point defect 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



0 s=*’I2 
0 S=+l 

I 0 

0 

0 

59 

Figure 21. (a) An x-y slice through a 3/3 dimensional simulation using free boundary 
conditions and S P =  10, BE= 1 and TW=1.  The simulation was terminated after 
approximately half the iterations required for a monodomain. More s=i defects are 
observed than s=  1 point defects because the higher splay energy means that escape into 
the third dimension is not energetically favourable. (b) The map showing the location of 
the integral and half integral defects. 

forms readily and is shown as a series of sections of the x-y plane in figure 20. The defect 
is stable and undergoes no change when the boundary conditions are relaxed. Unlike 
the 2/2 dimensional case, the defect is also observed to be stable when the elastic 
constants are equal, as has been predicted from the continuum theory [27]. 

In a liquid crystalline polymer, the splay constant is thought to be much higher than 
that of either bend or twist [ S ] .  In figure 21 a slice is shown through the x-y plane of a 
simulation using free boundary conditions in which the splay elastic constant is equal 
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to ten times that of bend and twist. In contrast to the case of equal elastic constants, 
there are now more s = &+ disclinations than s = L 1 point disclinations. This may be 
accounted for by the requirement of both bend and splay for this process to occur [2]. 

4.3. Application of the model to the texture seen in thinJilms of high molecular weight 
polyesters 

In many of the situations to which the model has been applied, the splay, twist and 
bend energies have been equal and the modelling is thus more relevant to small 
molecule systems than polymers. However, the model appears to operate successfully 
in predicting known textures, and is also in agreement with analytical predictions of 
direct fields where these are available. The confidence thus acquired has led us to use 
it to address the long standing issue of the fine-scale textures observed in high 
molecular weight thermotropic copolyesters of the ‘Vectra’ type. We have previously 
[30] reported a series of microstructural observations which suggested that the fine- 
scale (so called ‘tight’) textures are disordered counterparts of the well-characterized 
banded texture, and that in each case the planar boundary conditions at the top and 
bottom surfaces of the sheet sample propagate through the polymer to produce a layer- 
like, fissile structure. 

....................... 
A A 

Figure 22. Edge-on views of two structures at equivalent stages of development with planar 
boundary conditions at the top and bottom surfaces of the diagram. In (a), the splay, twist 
and bend energies are set equal, while in (b)  splay is set to be 100 times the energy of the 
other two distortions. The planar boundary conditions propagate to a much greater depth 
when splay is high. 
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Figure 23. x-y Slices through successive layers of a 3/3 dimensional model simulated using the 
elastic constants S P  = 100, BE = 1 and T W =  1 and terminated after approximately half the 
iterations required for a monodomain. Boundary conditions are planar on the top and 
bottom surfaces and periodic elsewhere. The structure forms a layered morphology in 
which there is little matching from layer to layer and a sinuous trajectory within the layers. 
The hatching in the inset diagrams shows regions which would appear dark if the structure 
was to be viewed through crossed polars orthogonal to the page. 

Following an indication by Meyer [31] that, in cases where the splay energy is high 
such as with polymers, the splay component of deformation will be much more diffuse 
than either twist or bend, the propagation of planar boundary conditions was modelled 
for two limiting conditions: (i) equal distortion energies (splay = twist = bend); (ii) splay 
energy one hundred times that of bend and twist. These two simulations are shown in 
figure 22, each model having run for approximately the same number of cycles. It is 
clearly apparent that the planar surface orientation exerts its influence to a much 
greater depth in the specimen with the high splay energy. The lower bend and twist 
energies mean that monodomain order is not developed within the layers. Figure 23 
shows examples of the structures which are developed in the layers, the lateral 
boundary conditions in this case being periodic. The x-y sections shown in (a) and (b) 
are neighbours in the stack but are observed to exhibit little matching with each other 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
0
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



62 S. E. Bedford and A. H. Windle 

since twist is set to be a low energy compared with splay. The structure may therefore be 
considered as fissile layers lying parallel to the top and bottom surfaces. Within the 
layers the directors are observed to follow sinuous trajectories containing regions of 
considerable bend, but only very gentle splay. This undulating structure is very 
reminiscent of the banded [32] and tight textures [3,30] observed in thermotropic 
copolyesters, although it should be emphasized that the model makes no predictions 
with respect to the size-scale of the structure. The simulation has not yet been run with a 
preferred starting orientation commensurate with a shear axis, and thus long range, 
regular banded textures which must also involve through-thickness orientational 
correlation, have not yet been generated. 

Nevertheless, the modelling developed so far indicates that the fissile nature of films 
of high molecular weight main chain thermotropics without flexible spacers is related 
to the occurrence of both tight and banded textures, and that all three features stem 
from the high splay distortion energies characteristic of these polymers. 

5. Conclusions 
(i) It is possible to simulate microstructures on two dimensional lattices that are in 

good agreement with those predicted by the continuum theory, both when the elastic 
constants are approximately equal, as in small molecule liquid crystals, and when they 
are very different, as is the case for liquid crystalline polymers. For example, the model 
correctly predicts that s = -3 disclinations have a morphology that does not 
appreciably alter as the ratio of the elastic constants is varied, while that of the s =  +3 
disclinations undergoes a marked change. There is close agreement between the 
trajectories of the simulated s = + $ disclinations and those calculated using the 
Nehring-Saupe expression for a variety of elastic constants. 

(ii) s= 21 disclinations, whose energies are four times that of the s =  +$ 
disclinations are rarely seen in 2/2 dimensional simulations, unless favoured by both 
the ratio of the elastic constants and particular boundary conditions. 

(iii) In 3/3 dimensional models simulated using equal elastic constants, the 
majority of disclinations are of type s= & 1, but are point disclinations in contrast to 
the 2/2 dimensional case. Point disclinations can be considered as the result of the 
process of escape into the third dimension. 

(iv) 3/3 dimensional simulations performed with free boundary conditions, and 
with the splay energy set very much higher than that of bend or twist exhibit a 
predominance of s =  -t* line disclinations, because escape into the third dimension is 
no longer favoured. Similar simulations performed with planar boundary conditions at 
the top and bottom surfaces produce layered microstructures with little correlation 
between the layers and a sinuous trajectory within the layers. This behaviour is seen as 
having key importance in the formation of both the banded and tight textures observed 
in liquid crystalline polymers, while also explaining why they are not observed in small 
molecule mesophases where the elastic constants are much more similar. 

The simulations, which are in essence iterative steps in the solutions of Frank’s 
equation by a finite difference approach, appear able to describe the evolution of the 
microstructures which are observed in real liquid crystal systems, both for small 
molecules and liquid crystalline polymers. The model is capable of further development 
in several ways such as the inclusion of shear and magnetic fields and the simulation of 
microstructure developed at finite temperatures. 
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